chuban
This commit is contained in:
302
data_utils/feature_extractor.py
Normal file
302
data_utils/feature_extractor.py
Normal file
@@ -0,0 +1,302 @@
|
||||
"""
|
||||
特征提取模块,用于从音频信号中提取声学特征
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import librosa
|
||||
from tqdm import tqdm
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
import pickle
|
||||
import os
|
||||
|
||||
def extract_features(audio, sr=22050):
|
||||
"""
|
||||
从单个音频信号提取特征(兼容旧函数名)
|
||||
|
||||
Args:
|
||||
audio: 音频信号
|
||||
sr: 采样率
|
||||
|
||||
Returns:
|
||||
features: 特征字典
|
||||
"""
|
||||
return extract_features_single(audio, sr)
|
||||
|
||||
def extract_features_single(audio, sr=22050):
|
||||
"""
|
||||
从单个音频信号提取特征
|
||||
|
||||
Args:
|
||||
audio: 音频信号
|
||||
sr: 采样率
|
||||
|
||||
Returns:
|
||||
features: 特征字典
|
||||
"""
|
||||
# 确保音频长度统一
|
||||
max_samples = sr * 5 # 最大5秒
|
||||
|
||||
if len(audio) < max_samples:
|
||||
# 音频太短,用0填充
|
||||
padding = max_samples - len(audio)
|
||||
audio = np.pad(audio, (0, padding), 'constant')
|
||||
else:
|
||||
# 音频太长,截断
|
||||
audio = audio[:max_samples]
|
||||
|
||||
# 初始化特征字典
|
||||
features = {}
|
||||
|
||||
# 提取ZCR(过零率)
|
||||
zcr = librosa.feature.zero_crossing_rate(audio)[0]
|
||||
features['zero_crossing_rate_mean'] = np.mean(zcr)
|
||||
features['zero_crossing_rate_std'] = np.std(zcr)
|
||||
features['zero_crossing_rate_max'] = np.max(zcr)
|
||||
features['zero_crossing_rate_min'] = np.min(zcr)
|
||||
|
||||
# 提取RMS(均方根能量)
|
||||
rms = librosa.feature.rms(y=audio)[0]
|
||||
features['rms_mean'] = np.mean(rms)
|
||||
features['rms_std'] = np.std(rms)
|
||||
features['rms_max'] = np.max(rms)
|
||||
features['rms_min'] = np.min(rms)
|
||||
|
||||
# 提取MFCC(梅尔频率倒谱系数)
|
||||
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=13)
|
||||
for i in range(1, 14):
|
||||
features[f'mfcc_{i}_mean'] = np.mean(mfccs[i-1])
|
||||
features[f'mfcc_{i}_std'] = np.std(mfccs[i-1])
|
||||
features[f'mfcc_{i}_max'] = np.max(mfccs[i-1])
|
||||
features[f'mfcc_{i}_min'] = np.min(mfccs[i-1])
|
||||
|
||||
# 提取频谱质心
|
||||
spectral_centroid = librosa.feature.spectral_centroid(y=audio, sr=sr)[0]
|
||||
features['spectral_centroid_mean'] = np.mean(spectral_centroid)
|
||||
features['spectral_centroid_std'] = np.std(spectral_centroid)
|
||||
features['spectral_centroid_max'] = np.max(spectral_centroid)
|
||||
features['spectral_centroid_min'] = np.min(spectral_centroid)
|
||||
|
||||
# 提取频谱带宽
|
||||
spectral_bandwidth = librosa.feature.spectral_bandwidth(y=audio, sr=sr)[0]
|
||||
features['spectral_bandwidth_mean'] = np.mean(spectral_bandwidth)
|
||||
features['spectral_bandwidth_std'] = np.std(spectral_bandwidth)
|
||||
features['spectral_bandwidth_max'] = np.max(spectral_bandwidth)
|
||||
features['spectral_bandwidth_min'] = np.min(spectral_bandwidth)
|
||||
|
||||
# 提取频谱衰减
|
||||
spectral_rolloff = librosa.feature.spectral_rolloff(y=audio, sr=sr)[0]
|
||||
features['spectral_rolloff_mean'] = np.mean(spectral_rolloff)
|
||||
features['spectral_rolloff_std'] = np.std(spectral_rolloff)
|
||||
features['spectral_rolloff_max'] = np.max(spectral_rolloff)
|
||||
features['spectral_rolloff_min'] = np.min(spectral_rolloff)
|
||||
|
||||
# 提取色度特征
|
||||
chroma = librosa.feature.chroma_stft(y=audio, sr=sr)
|
||||
features['chroma_1_mean'] = np.mean(chroma[0])
|
||||
features['chroma_2_mean'] = np.mean(chroma[1])
|
||||
features['chroma_3_mean'] = np.mean(chroma[2])
|
||||
features['chroma_4_mean'] = np.mean(chroma[3])
|
||||
features['chroma_5_mean'] = np.mean(chroma[4])
|
||||
|
||||
# 提取声音谱(Mel频谱)
|
||||
mel_spec = librosa.feature.melspectrogram(y=audio, sr=sr)
|
||||
features['mel_spec_mean'] = np.mean(mel_spec)
|
||||
features['mel_spec_std'] = np.std(mel_spec)
|
||||
|
||||
# 提取对数功率谱
|
||||
log_power = librosa.amplitude_to_db(mel_spec)
|
||||
features['log_power_mean'] = np.mean(log_power)
|
||||
features['log_power_std'] = np.std(log_power)
|
||||
|
||||
# 添加统计矩
|
||||
features['audio_mean'] = np.mean(audio)
|
||||
features['audio_std'] = np.std(audio)
|
||||
features['audio_skew'] = np.mean((audio - np.mean(audio))**3) / (np.std(audio)**3)
|
||||
features['audio_kurtosis'] = np.mean((audio - np.mean(audio))**4) / (np.std(audio)**4) - 3
|
||||
|
||||
# 估计音高
|
||||
pitches, magnitudes = librosa.piptrack(y=audio, sr=sr)
|
||||
pitches_mean = []
|
||||
for t in range(pitches.shape[1]):
|
||||
idx = np.argmax(magnitudes[:, t])
|
||||
pitch = pitches[idx, t]
|
||||
if pitch > 0: # 过滤掉静音帧
|
||||
pitches_mean.append(pitch)
|
||||
|
||||
if pitches_mean: # 确保有有效的音高值
|
||||
features['pitch_mean'] = np.mean(pitches_mean)
|
||||
features['pitch_std'] = np.std(pitches_mean) if len(pitches_mean) > 1 else 0
|
||||
features['pitch_max'] = np.max(pitches_mean)
|
||||
features['pitch_min'] = np.min(pitches_mean) if len(pitches_mean) > 0 else 0
|
||||
else:
|
||||
features['pitch_mean'] = 0
|
||||
features['pitch_std'] = 0
|
||||
features['pitch_max'] = 0
|
||||
features['pitch_min'] = 0
|
||||
|
||||
# 提取调谐偏差
|
||||
tuning_offset = librosa.estimate_tuning(y=audio, sr=sr)
|
||||
features['tuning_offset'] = tuning_offset
|
||||
|
||||
# 新增特征 2:提取光谱平坦度指标
|
||||
spectral_flatness = librosa.feature.spectral_flatness(y=audio)[0]
|
||||
features['spectral_flatness_mean'] = np.mean(spectral_flatness)
|
||||
features['spectral_flatness_std'] = np.std(spectral_flatness)
|
||||
features['spectral_flatness_max'] = np.max(spectral_flatness)
|
||||
features['spectral_flatness_min'] = np.min(spectral_flatness)
|
||||
|
||||
# 新增特征 3:提取光谱对比度指标
|
||||
spectral_contrast = librosa.feature.spectral_contrast(y=audio, sr=sr)
|
||||
# 为每个频带提取统计特征
|
||||
for i in range(spectral_contrast.shape[0]):
|
||||
features[f'spectral_contrast_{i+1}_mean'] = np.mean(spectral_contrast[i])
|
||||
features[f'spectral_contrast_{i+1}_std'] = np.std(spectral_contrast[i])
|
||||
|
||||
# 光谱对比度的总体统计
|
||||
features['spectral_contrast_mean'] = np.mean(spectral_contrast)
|
||||
features['spectral_contrast_std'] = np.std(spectral_contrast)
|
||||
|
||||
# 新增特征 4:梅尔频率特征扩展(针对图片中提到的梅尔频率)
|
||||
mfcc_delta = librosa.feature.delta(mfccs)
|
||||
mfcc_delta2 = librosa.feature.delta(mfccs, order=2)
|
||||
|
||||
# 添加一阶差分特征
|
||||
for i in range(1, 14):
|
||||
features[f'mfcc_{i}_delta_mean'] = np.mean(mfcc_delta[i-1])
|
||||
features[f'mfcc_{i}_delta_std'] = np.std(mfcc_delta[i-1])
|
||||
|
||||
# 添加二阶差分特征
|
||||
for i in range(1, 14):
|
||||
features[f'mfcc_{i}_delta2_mean'] = np.mean(mfcc_delta2[i-1])
|
||||
features[f'mfcc_{i}_delta2_std'] = np.std(mfcc_delta2[i-1])
|
||||
|
||||
return features
|
||||
|
||||
def extract_features_batch(audio_list):
|
||||
"""
|
||||
批量提取音频特征
|
||||
|
||||
Args:
|
||||
audio_list: 音频信号列表
|
||||
|
||||
Returns:
|
||||
features_list: 特征字典列表
|
||||
"""
|
||||
features_list = []
|
||||
|
||||
for i, audio in enumerate(tqdm(audio_list, desc="提取特征")):
|
||||
try:
|
||||
features = extract_features_single(audio)
|
||||
features_list.append(features)
|
||||
except Exception as e:
|
||||
print(f"处理第{i}个音频时出错: {e}")
|
||||
# 添加空特征字典,避免索引错误
|
||||
features_list.append({})
|
||||
|
||||
return features_list
|
||||
|
||||
def features_to_matrix(features_list, feature_names=None):
|
||||
"""
|
||||
将特征字典列表转换为特征矩阵
|
||||
|
||||
Args:
|
||||
features_list: 特征字典列表
|
||||
feature_names: 特征名称列表,如果为None则从第一个非空字典中获取
|
||||
|
||||
Returns:
|
||||
X: 特征矩阵
|
||||
feature_names: 特征名称列表
|
||||
"""
|
||||
# 如果没有提供特征名称,从第一个非空字典中获取
|
||||
if feature_names is None:
|
||||
for features in features_list:
|
||||
if features: # 非空字典
|
||||
feature_names = list(features.keys())
|
||||
break
|
||||
|
||||
if feature_names is None:
|
||||
raise ValueError("所有特征字典都是空的,无法确定特征名称")
|
||||
|
||||
# 创建特征矩阵
|
||||
X = np.zeros((len(features_list), len(feature_names)))
|
||||
|
||||
for i, features in enumerate(features_list):
|
||||
if not features: # 空字典
|
||||
# 填充为0,或者可以使用平均值等
|
||||
continue
|
||||
|
||||
for j, name in enumerate(feature_names):
|
||||
if name in features:
|
||||
X[i, j] = features[name]
|
||||
|
||||
return X, feature_names
|
||||
|
||||
def normalize_features(X_train, X_val, X_test):
|
||||
"""
|
||||
标准化特征
|
||||
|
||||
Args:
|
||||
X_train: 训练集特征矩阵
|
||||
X_val: 验证集特征矩阵
|
||||
X_test: 测试集特征矩阵
|
||||
|
||||
Returns:
|
||||
X_train_norm: 标准化后的训练集
|
||||
X_val_norm: 标准化后的验证集
|
||||
X_test_norm: 标准化后的测试集
|
||||
"""
|
||||
# 初始化标准化器
|
||||
scaler = StandardScaler()
|
||||
|
||||
# 使用训练集拟合标准化器
|
||||
scaler.fit(X_train)
|
||||
|
||||
# 转换所有数据集
|
||||
X_train_norm = scaler.transform(X_train)
|
||||
X_val_norm = scaler.transform(X_val)
|
||||
X_test_norm = scaler.transform(X_test)
|
||||
|
||||
# 确保输出目录存在
|
||||
output_dir = 'output/emotion_model'
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
# 保存标准化器
|
||||
with open(os.path.join(output_dir, 'feature_scaler.pkl'), 'wb') as f:
|
||||
pickle.dump(scaler, f)
|
||||
|
||||
return X_train_norm, X_val_norm, X_test_norm
|
||||
|
||||
def normalize_features_with_params(X, scaler):
|
||||
"""
|
||||
使用给定的缩放参数标准化特征
|
||||
|
||||
Args:
|
||||
X: 特征矩阵
|
||||
scaler: 已经拟合的标准化器
|
||||
|
||||
Returns:
|
||||
X_norm: 标准化后的特征矩阵
|
||||
"""
|
||||
return scaler.transform(X)
|
||||
|
||||
def reshape_for_lstm(X):
|
||||
"""
|
||||
将特征矩阵重塑为LSTM输入格式
|
||||
|
||||
Args:
|
||||
X: 特征矩阵,或特征矩阵列表
|
||||
|
||||
Returns:
|
||||
X_reshaped: 重塑后的特征矩阵
|
||||
"""
|
||||
# 如果输入是列表,转换为数组
|
||||
if isinstance(X, list):
|
||||
X = np.array(X)
|
||||
|
||||
# 添加时间步维度
|
||||
if len(X.shape) == 2:
|
||||
return X.reshape(X.shape[0], 1, X.shape[1])
|
||||
|
||||
# 如果已经是3D,直接返回
|
||||
return X
|
||||
Reference in New Issue
Block a user